Ravinder and Manoj Kumar Singh

DISCOVERY OF NEW PREHISTORIC SITES IN THE KHARAGPUR HILLS OF BIHAR: A PRELIMINARY REPORT

Abstract

This preliminary archaeological exploration was conducted in the Kharagpur hills of Bihar to find clues related to our unwritten past. It led to the discovery of six new prehistoric sites: Dubratari, Kumartari, Patwakharna Tand, Gurmaha and Manjali Tand. These sites have revealed evidence ranging from handaxes to blade tool types. In addition, the Gurmaha site (Findspot-I) reported microlithic evidence and a few fragments of ring stones were also found at the Manjali Tand and Parsatari sites. This initial report demonstrates the richness of this region during the prehistoric period and offers a roadmap for future research work.

Keywords: Prehistory, Exploration, Artefact, Bihar, Kharagpur hills

Introduction

Prehistory, a discipline dedicated to unravelling humanity's undocumented past, relies heavily on material remnants, primarily lithic artefacts. These lithic artefacts are deafeningly silent yet prove to be one of the most important sources of information about the bygone culture. Robert Bruce Foote (30 May 1863) reported the first Palaeolithic implement in Pallavaram near Chennai which commenced prehistoric research in India (Paddayya and Deo 2017). The Acheulian culture is dated around 1.5 Ma from the Attirampakkam site in Tamilnadu (Pappu et al. 2011) and the Isampur site in Karnataka is dated to around 1.2 Ma (Paddayya et al. 2002). The fossil evidence of an early hominin skull cap was reported from the Hathnora site in Madhya Pradesh on the bank of the Narmada River (Sonakia and Biswas 1998). Despite the paucity of fossil evidence in India, the abundance of stone artefacts indicates the presence of Pleistocene hominins in these regions. In the present study, the fieldwork was conducted from 2021 to 2024 in search of prehistoric remnants. This research aims to provide significant insights and contribute to the understanding of Indian prehistory.

RAVINDER, Department of Anthropology, University of Delhi, Delhi- 110007, Email: ravindersoni210@gmail.com and MANOJ KUMAR SINGH, Professor, Department of Anthropology, University of Delhi, Delhi – 110007, Email: mksinghanthro@rediffmail.com

The first discovery of a handaxe in the Kharagpur hills of Bihar was made by Tagore and Kar (1944-45), approximately one-mile northeast of the Bhimbandh village in the Munger district. Subsequently, Acheulian artefacts were reported in the same region (Bose et al. 1960). During 1960-61, two research teams conducted independent investigations. Shri Sita Ram Roy and colleagues led one team from the K. P Jayaswal Research Institute, Patna; another was supervised by Dr R.C.P Singh from Patna University, reported the Palaeolithic implements in the Bhimbandh region (IAR 1960-61:5). Again, Singh explored the same region providing further insights into the lithic culture of the area (IAR 1962-63:5). The region was later reinvestigated by Joshi and Singh, they discovered the Palaeolithic tools of advanced Acheulian near the Maan River and Late Stone Age tools, along with Neolithic artefacts, near the guard's hut, locally known as Reha. During their survey of the hilltop contiguous to the left bank of the Rajjan River, they found a small number of handaxes made of pink quartzite and from the lower level (20m above the river bed), they reported handaxes, flakes and flake-blades. Additionally, they also discovered an Early Stone Age site on the left bank of the *Teparpani* stream, approximately 5 km from Bhimbandh (IAR 1965-66:7-8).

In the Kharagpur hills, Paisra is a very significant advanced Acheulian site in the Munger district. This site yielded around a thousand artefacts along with debitage, indicating it was a factory site. The excavation at the site unearthed a massive stone alignment at Locality E, while Locality C unveiled evidence of post-holes. Radiocarbon dating was conducted on a charcoal sample from the Mesolithic horizon at Locality F dated 7420 ± 110 B.P (Pant et al. 1978; IAR 1980-81:9; 1983-84:13-14; 1985-86: 9-11; 1986-87:25). Manoj Kumar Singh published his PhD work in the form of a book titled 'The Prehistory of Kharagpur Hills of South Bihar (India).' The exploration was conducted between 1996 to 1999 which led to the finding of 11 new prehistoric sites: Rakatrohaniya Tad, Satbehariya, Kushitari, Tetariya, and Goratad (2013); Jogiya (2017); Sohdihwa (Bhattacharya and Singh 1997); Pathalgarwa (Bhattacharya and Singh 1997-1998); Jurpaniya (Bhattacharya and Singh 1998); Adhwariya (Bhattacharya and Singh 2000-2001); Banargarh (Singh et al. 2022).

These initial investigations around the Bhimbandh region highlighted its potential to provide clues related to the prehistoric past. In the lack of cultural remnants, which are predominantly found in the form of lithic artefacts, it becomes essential to extract every possible information regarding the economic and adaptive behaviour of our earliest ancestors through the analysis of these artefacts. They possibly use tools made from organic materials but these tools decomposed over time. Only a few archaeological sites yielded evidence of organic tool types (Paddayya and Deo 2017). So, prehistoric evidence, primarily in the form of lithic artefacts, provides the main insight for investigating our unwritten past.

Theoretical Framework

This prehistoric exploration is grounded in the theoretical framework of Cultural Ecology, which investigates the dynamic relationship between human societies and their environment (Steward 1955). The abundance of natural resources in the Kharagpur Hills, including raw materials for tool-making and proximity to water sources, highlights the role of ecological factors in shaping settlement patterns and technological choices at prehistoric sites. The lithic assemblages ranging from handaxes to microliths demonstrate adaptive responses to environmental opportunities and constraints, echoing the principles of environmental adaptation central to cultural ecology (Butzer 1982).

Moreover, general ethnoarchaeological observations of the tribal people who reside near these sites in this forested region provide a contemporary lens to interpret the subsistence practices of prehistoric groups. The Koda/Kora reliance on hunting and gathering illustrates a continued interplay between humans and their environment, offering valuable insight for understanding past adaptive behaviours.

Physiography of the Region

The Kharagpur Hills are named after Kharagpur town; situated on the eastern boundary of the hills. These are composed of isolated peaks and numerous low-range hills which is an outlier of the Vindhyan series of rock formations (Sherwill 1852). The landscape comprises numerous steep ridges emerging from the surrounding lowlands, characterized by rugged faces of massive quartzites at various points. These are irregular formations with no consistent direction. A significant part of the range is covered with forests but the patches of the valley can be easily seen which is used for agricultural purposes. Maruk is the highest point which is 1628 ft. above sea level. It is a table-topped hill that is surrounded by forest vegetation and the surface is capped by a thick layer of laterite (O'Malley 1926). The Kharagpur hills primarily consist of various forms of quartzite, phyllites, slate, sericite, schist, intrusive granite, quartz vein and laterite (Singh 2013). The presence of the many hot springs is another notable feature of these hills. These have been classified into three distinct groups by Mr. V. H. Jackson. The first group includes faults presented on the southern edge of the hills, it comprises some of the best hot springs named Bhimbhand, Malnipahar and Karmandhari. The second group, which is relatively cooler and situated on the eastern border comprises the Rameshwar Kund near Kharagpur town, Bhurka and Rashikund. Another group of springs extends further northeast which includes Sitakund near Munger town and its neighbouring springs (O'Malley 1926). Sitakund, holds significance rooted in local legend, according to that Lord Shri Ram, after rescuing his wife Sita in a fierce battle with Ravana, found himself questioning her loyalty. Consequently, she entered a blazing fire, to prove herself true and

came out unharmed. After that, she took a bath in the pool and released all her heat into the water (absorbed from the fire). The minimum recorded temperature of the spring is 92° and heats up to 138° F (O'Malley 1917). The discharge of the water from the springs is dependent on the monsoon. The several major and minor river streams that originate in this region include Maan, Anjan, Morwe, Karewar, Jalkund nala Dakra nala and Gangta nala (Singh 2013).

Description of the Sites

This section provides general information about the location and some important features of the prehistoric sites. Fig. 1: depicts the location of the study area and the newly reported sites.

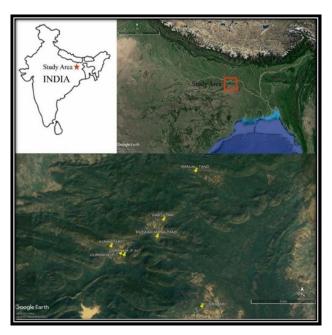


Figure 1: Map shows the location of Prehistoric sites

Dubratari (DBT)

The site (25°2'14"N, 86°24'2" E) is located approximately 900 m north of the Dubratari village, which comes under the Anandpur panchayat of Laxmipur block in the Jamui district. It is situated in the pediment of *Sureiya Pahad* (Anjan Hill), from which the *Amjari* cold spring originates. Currently, the flow of water in the spring is minimal. The spring is located to the west of the site and the Karewar River is estimated to be 2.5 to 3 km (west), near the Anandpur village. Additionally, the site is positioned close to the earlier reported Rakatrohaniya Tad and Jogiya sites (Singh 2013, 2017).

Figure 2: General view of the Dubratari site

The spread of the artefacts is found to be sparsely scattered after crossing the village to the north, on the flat plain. However, inside the forest (Fig. 2) due to the washout of thick soil cover (about 1 to 3 meters in height), the implementiferous surface yields a large concentration of artefacts. Boulders and Cobbles are noticed over the site. The surface of the site seems to be undulating. Several clusters of artefacts are reported across the site. Fig. 3: displays several artefacts from the *Dubratari* site, providing a glimpse into the findings of this site.

Figure 3: Artefacts from the *Dubratari* site

The large cores and flakes are found on the site along with finished

artefacts including handaxes, cleavers, scrapers, borers, points, denticulate, blades etc.

Parsatari (PRT)

The site (25°7'2" N, 86°22'16" E) is situated toward the northeast of Tola *Parsatari* village, within the Barhat block of Jamui district. The presence of lithic artefacts is noticed shortly after passing through the village on the way toward the *Karmaegh Baba* temple. The vegetation over the site is not very dense. Anjan River, locally known as *Bhatakol Nadi*, lies approximately 1 km to the west of the village. The artefacts are reported in the base of the hills locally known as *Nipaniya Pahad* and *Ratam (Ratma) Pahad*, situated to the north and east of the village (Fig. 4). Over the site, they seem to be standing opposite each other. The site extends to Tola Bhorbhandari village where it can be accessed from the north.

Several rain gullies are visible over the site, cutting the surface in a wavy manner. The boulders and cobbles carried by the seasonal water flow or other geological activity are seen at the site and accumulated in profuse amounts toward the hills. The thick soil cover (estimated to be up to 6 meters in height at places) sealed the artefact-bearing surface. Fluvial activities, such as gully formation and sediment transportation, have exposed the artefacts by cutting the upper soil surface.

Figure 4: General view of the *Parsatari* site

The high frequency of artefacts is reported on the calcrete and lateritic

pellets with soil. The erosional soil surface around the *tilas* (deposition of soil) also contains the artefacts in a very mint-fresh condition. In some cases, the artefacts seem to be standing alone on a thin platform of soil (1 to 5 cm in height) because their surrounding soil has been washed away.

Figure 5: Artefacts from the Parsatari site

The site yields a variety of artefacts ranging from handaxes to blades in a mixed state with large cores, flakes, and waste chips. Additionally, one chopping tool and two broken pieces of ring stones have also been found at the site (Fig. 5).

Patwakharna Tand (PKT)

This site (25°6'8" N, 86°21'51" E) is situated near the Chormara village, which comes under the Barhat block of Jamui district. The village consists of two parts known as *Badka tola* and *Chutka tola*. The artefacts are found approximately 200 m before entering the village (Fig. 6), on both sides of the way from Laxmipur to Chormara. Earlier, investigations in the vicinity of the area were done by Bhattacharya and Singh (1997); Joshi and Singh (IAR 1965-

66). The place where the artefacts were reported first is locally known as $Patwakharna\ Tand$. The vegetation over the site is moderate and towards the lower benches of the hills, it becomes dense. The artefacts are found on the lower slope extending to the plain of the hills locally known as $Nirbhaiya\ Pahad$ (southeast) $Dhanabad\ Pahad$ (south) and adjacent to this (southwest) $Ammakol\ Pahad$. They form a roughly V-shape formation. The Anjan River ($Bhattakol\ Nadi$) is located approximately 700 m to the northwest of the village. This site is surrounded by several big tilas (deposition of the soil) which are estimated up to 6 meters in height at places and form a zig-zag pattern of pathway over the site. The artefacts are exposed due to the erosion of thick soil cover.

Figure 6: General view of the Patwakharna Tand site

The stone artefacts are found scattered across the surface but they are more frequently reported over the calcrete and lateritic pellets with soil. The evidence from the site indicates extensive quarrying activity that must have taken place during the Pleistocene period. The Prehistoric man selected this region for the manufacturing of artefacts due to the accessibility of the various shapes and sizes of stones. Numerous large blocks of Quartzite are observed, containing long and wide marks of flake beds. Some artefacts are found trapped within the hard depositions.

Figure 7: Artefacts from the Patwakharna Tand site

The site has yielded a variety of artefacts (Fig. 7), including handaxes, cleavers, scrapers, notches, denticulates, borers, points, blades, etc. These tools have been reported along with the raw material and their byproducts.

Gurmaha (GRM)

The site is near the *Gurmaha* village, which comes under the Barhat block of Jamui district. The Anjan River is located approximately 300 m to the west of the village. The site is divided into two findspots based on the occurrence of artefacts (Fig. 8). Findspot-1 (25°5'19" N, 86°19'48" E) is located near the locally known as *Malikwa Ghat* on the left bank (south) of the Anjan river.

Another Findspot (25°5′14" N, 86°19′59" E) is located at the foothill of locally known as *Chaamra Pahad*, which is situated to the east of the village. This spot is near the old forest department building. There, the patches of lateritic deposition are visible on the surface. Several clusters of artefacts are reported from the site. The flake beds are easily visible on the large blocks of stone. Some of the artefacts are noticed to be embedded into the hard deposits.

Figure 8: General view of the Gurmaha site

The artefacts are visible approximately 200 m (north) of the village in a sparsely scattered manner. However, towards Findspot-I and II, the frequency of artefacts is reported to be high. The erosion of thick soil cover, approximately 1 to 4 meters in height at places made the artefacts visible on the surface.

Figure 9: Artefacts from the *Gurmaha* site

The raw material in the form of cobbles and pebbles was also easily

available near the Anjan River. The tool types reported from the site range from handaxes to blades, including various cores, flakes, and waste chips (Fig. 9). Findspot-1 also yields a rich cluster of microlithic artefacts.

Kumartari (KMT)

The site (25°5'45" N, 86°19'18" E) lies in the north of *Kumartari* village which comes under the Barhat block of Jamui district. It is located in the foothill of locally known as *Dhawa Malin Pahad*, situated in the north of the village (Fig. 10). The site extends over a wide area and can also be accessed from the north of Bichla Tola village. The Anjan River is located to the south of the village. As there is no bridge over the river, one must cross the river either by foot or motor vehicles like motorcycles, tractors, or jeeps to reach the site from the locally known *Malikwa Ghat*.

Figure 10: General view of the Kumartari site

The rich clusters of artefacts are reported over the site. The entire reduction sequence, from procurement of raw material to removal of flakes and fashioning them into tools, is visible. The tool-bearing surface was covered by a thick homogenous soil cover that is still visible in the form of *tilas* (approximately 2 to 5 meters in height at places).

Figure 11: Artefacts from the Kumartari site

This prehistoric site has yielded a variety of tool types (Fig. 11), including handaxes, cleavers, scrapers, borers, burins, points, notches, denticulate etc. in a very well-preserved state.

Manjali Tand (MJT)

The site (25°9'35" N, 86°24'12" E) is situated near the Tola *Manjali Tand* village in the Dharhara block of the Munger district. It is situated approximately 1 km west of Paisra village. A Central Reserve Force Camp (CRPF) is located near the village. The rich concentration of artefacts is reported in the northwest direction from the camp, approximately 200 m. This site is an extension of the earlier reported Paisra site (Pant et al. 1978; IAR 1980-81:9; 1983-84:13-14; 1985-86:9-11; 1986-87:25).

To the north of the village lies a hill locally known as *Ghar Pahar*, where a high frequency of artefacts is reported in the foothill (Fig. 12). The river, locally known as *Badki Nadi* is located to the south of the site. It is a seasonal river, but during heavy rainfall, water is sometimes stored in pools or depressions in the riverbed, which are reportedly used by villagers. The vegetation over the site is not very dense and is mainly dominated by Sakhua (Shorea robusta), Kendu (*Diospyros melanoxylon*) and Mahua (*Madhuca longifolia*) trees. The accumulation of boulders and cobbles is high when moving

towards the base of the hill. Flake beds are also visible on the large blocks of Quartzite. Many *tilas* (deposition of soil) are observed across the site, which are the remnants of an earlier thick soil cover (estimated up to 5 meters in height at places) on the implementiferous surface. The tabletop land over these *tilas* has not yielded a single artefact. The evidence of the chipping activities is visible over the site.

Figure 12: General view of the Manjali Tand site

The artefacts are reported over the surfaces which are primarily covered by lateritic pellets and weathered chips of rock. The lower soil surface around these patches also contains the artefacts. During the field investigation, it has been observed that some of the artefacts were trapped in hard lateritic depositions which may have occurred after the artefacts were present there.

Figure 13: Artefacts from the Manjali Tand site

This site has reported a rich concentration of artefacts (Fig. 13) in a fresh state of preservation including handaxes, cleavers, scrapers, borers, points, blades, etc. Three fragments of ring stones have also been found at the site.

Discussion

Any archaeological fieldwork is fascinating but involves a challenging endeavour that comes with several difficulties and complexities. This preliminary exploration resulted in the discovery of six new prehistoric sites in the Kharagpur hills of Bihar, providing significant insight into the adaptive strategies, technological advancements, and settlement patterns of early human groups in this region.

All these are open-air sites. The primary reason for the visibility of these artefacts on the surface is the erosion of the thick soil cover. These sites have yielded a variety of tool types, ranging from handaxes to blades. Handaxes and cleavers, attributed to the Acheulian tradition, are robust tools likely used

for a variety of tasks. Handaxes were employed for skinning and cutting animal carcasses, digging roots and tubers, and crushing materials. Cleavers, on the other hand, were primarily used for cutting meat, bones, and trees (Pappu 2001:88-89). These tools signify a technological approach suitable for multiple functions in a demanding environment. Along with handaxes and cleavers, other tool types, such as a variety of scrapers, borers, points, backed knives, blades etc., were recorded at these sites. The refinement of handaxes, evident through careful shaping to enhance sharpness and durability, reflects increasing technological sophistication during the palaeolithic period. In addition, the discovery of microliths at Gurmaha (Find spot-I) suggests a technological shift toward more specialized tools, likely used for precision tasks such as hunting small game or processing plant materials. Their size and sharpness point to their integration into composite tools, marking a significant advancement in hunting efficiency and resource exploitation. Fragments of ring stones found at Parsatari and Manjali Tand further enrich the assemblage, indicating additional cultural or technological aspects at these sites.

The lithic assemblages of these sites provide valuable insights into the adaptive behaviours of prehistoric people. The tools display variations in shape, size, and manufacturing techniques. Some were specifically crafted for tasks like cutting or scraping, while others served more general purposes. These differences indicate that the tools were adapted to meet diverse needs, including hunting, gathering, and other essential survival activities. This variation in tool types highlights the technological diversity of prehistoric groups and reflects their ability to adapt to environmental opportunities and constraints (Steward 1955; Butzer 1982). The diversity of tool types and their preservation indicate that these sites were frequently used by different groups over extended periods, possibly suggesting a long-standing presence in the region.

The distribution of tools across the various sites also suggests that these locations were strategically chosen, as they are situated near significant natural resources. For example, the *Dubratari* site is located close to the *Amjari* cold spring, and the proximity of these sites to rivers like the Anjan River Bhatakol Nadi) is notable. These water sources would have been vital for sustaining human life, especially in the Pleistocene, when climatic conditions would have posed challenges. This pattern of site distribution highlights the role of environmental factors in shaping settlement choices. The availability of resources like water and raw materials for tool production, such as quartzite etc., would have been crucial for early human habitation in these areas. Sites near water sources also offer potential for sustainable access to food, either through fishing or the support of fauna and flora that are typically found in such habitats. This settlement pattern demonstrates the ability of early human populations to identify and exploit resource-rich areas for both short-term activities and potentially long-term occupations. The archaeological context and excellent preservation of the artefacts suggest that they were minimally

transported, indicating that these sites are in a primary context. This integrity enables more reliable interpretations of site usage and human activity patterns.

The tool types identified at these sites suggest a subsistence strategy primarily based on hunting and gathering, demonstrating the adaptive responses of prehistoric groups to their environment. These subsistence practices are mirrored in the contemporary activities of nearby tribal communities, such as the Kora/Koda, who still depend on forests for resource acquisition (Fig. 14). The general ethnoarchaeological observations highlight a clear division of labour within these people: males are predominantly involved in hunting, with boys aged between 7 and 10 years often seen using small bows and arrows to hunt birds and small game, such as rabbits, etc. In contrast, females focus primarily on gathering plant resources, caring for younger siblings, and performing other domestic tasks, with limited participation in hunting. This division of labour exemplifies the socialization process, where children are introduced into specific subsistence roles that align with the needs of their community. The male dominance in hunting offers a useful analogy for interpreting prehistoric social structures, highlighting the interplay between technology, environment, and social organization.

Further, a detailed typo-technical analysis of the sites will be conducted in subsequent research that will provide a deep insight into the lithic culture of the region. The representative samples for the Optically Stimulated Luminescence (OSL) dating from different stratigraphic levels containing artefacts at the *Gurmaha* site have been taken. These samples will be further processed in the Department of Geology, University of Delhi.

Fig. 14: (a) Shows a boy with their hunting implement and (b) Shows the gathering of Mahua flowers (Madhuca longifolia) by the females of a house

Conclusion

The discovery of several prehistoric sites in the Kharagpur Hills indicates extensive early human occupation in the region. The variety and abundance of artefacts suggest that the area was not only visited occasionally but was likely a long-term settlement region. The lithic assemblages, ranging from large bifacial tools to microliths, reflect a wide range of technological innovations and environmental adaptations. This preliminary report is an attempt to explore this region to clear away the dust from layers and reveal the richness of the Kharagpur hills in terms of the prehistoric past. Further, exploration holds the potential to discover new prehistoric sites and contribute new dimensions to the present study.

Acknowledgement

I would like to acknowledge the National Scheduled Castes Finance & Development Corporation and the Ministry of Social Justice and Empowerment, Government of India, for awarding me the National Fellowship for Scheduled Caste Students (NFSC), which has supported my research efforts. I also extend my sincere thanks to Mr. Rohit Kumar, PhD Scholar in the Department of Geology, University of Delhi, for his invaluable suggestions on the geological aspects of these sites.

References

Bose, N.K., Gupta, P., & Bose, P.

1960. "Palaeoliths from Munghyr District, Bihar", Man in India, 40(1), 66-75.

Butzer, K.W.

1982. Archaeology as Human Ecology: Method and Theory for a Contextual Approach. Cambridge: Cambridge University Press.

Bhattacharya, D.K., & Singh, M.K.

1997. "Sohdihwa: A Late Palaeolithic site from Kharagpur Valley of Bihar", Indian Anthropologist, 27(1), 29-55.

Bhattacharya, D.K., & Singh, M.K.

1997-98. "The Palaeolithic evidences from Pathalgarwa in Bihar", *Puratattva*, 28, 12-25.

Bhattacharya, D.K., & Singh, M.K.

1998. "Jurpaniya: The Epi-Palaeolithic tradition of Kharagpur Valley in Chotanagpur Plateau", *Man in India*, 78(3 & 4), 189-204.

Bhattacharya, D.K., & Singh, M.K.

2000-2001. "Adhwariya: A new Palaeolithic site from Kharagpur Hills, South Bihar", *Puratattva*, 31, 16-24.

Indian Archaeology: A Review

Annual Bulletin of the Archaeological Survey of India. New Delhi, p.
 5.

Indian Archaeology: A Review

1962-63. Annual Bulletin of the Archaeological Survey of India. New Delhi, p.5.

Indian Archaeology: A Review

1965-66. Annual Bulletin of the Archaeological Survey of India. New Delhi, pp. 7-8.

Indian Archaeology: A Review

Annual Bulletin of the Archaeological Survey of India. New Delhi, p.
 9.

Indian Archaeology: A Review

1983-84. Annual Bulletin of the Archaeological Survey of India. New Delhi, pp. 13-14.

Indian Archaeology: A Review

1985-86. Annual Bulletin of the Archaeological Survey of India. New Delhi, pp. 9-11.

Indian Archaeology: A Review

1986-87. Annual Bulletin of the Archaeological Survey of India. New Delhi, p. 25.

O'Malley, L.S.S.

1917. Bengal, Bihar, Orissa and Sikkim. Cambridge: Cambridge University Press.

O'Malley, L.S.S.

1926. Bihar and Orissa District Gazetteers: Monghyr. New Delhi: Concept Publishing Company.

Pant, P.C., Jayaswal, V., & Tiwari, R.

1978. "Paisra: An Acheulian Site in Bihar", Man and Environment, 2, 21-23.

Pappu, R.S.

2001. Acheulian Culture in Peninsular India: An Ecological Perspective. New Delhi: D.K. Printworld (P) Ltd.

Paddayya, K., Blackwell, B.A., Jhaldiyal, R., Petraglia, M.D., Fevrier, S., Chaderton, D.A., Blickstein, J.I., & Skinner, A.R.

2002. "Recent findings on the Acheulian of the Hunsgi and Baichbal valleys, Karnataka, with special reference to the Isampur excavation and its dating" *Current Science*, 82(6), 641-647.

Pappu, S., Gunnell, Y., Akhilesh, K., Braucher, R., Taieb, M., Demory, F., & Thouveny, N.

2011. "Early Pleistocene presence of Acheulian in South India", *Science*, 331(6024), 1596-1599.

Paddayya, K. & Deo, S.G. (ed.)

2017. Prehistory of South Asia (The Lower Palaeolithic or Formative Era of Hunting-Gathering). Bengaluru: The Mythic Society.

of Huming-Gamering). Deligatura: The Mythic Socie

Sherwill, S.R.

1852. "The Kurrukpoor Hills", Journal of Asiatic Society Bengal, 21, 195-

196.

Steward, Julian.

1955. Theory of Culture Change: The Methodology of Multilinear

Evolution. Urbana: University of Illinois Press.

Sonakia, A., & Biswas, S.

1998. "Antiquity of the Narmada Homo erectus, the early man of India",

Current Science, 75(4), 391-393.

Singh, M.K.

2013. The Prehistory of Kharagpur Hills, South Bihar (India). Oxford:

Archaeopress.

Singh, M.K.

2017. "Jogiya: An Acheulian Site of Kharagpur Hill, South Bihar", South

Asian Anthropologist, 17(1), 9-27.

Singh, M.K., Biswas, S., & Ravinder.

2022. "Palaeolithic Transitioning: An Analysis of the Prehistoric Site

Banargarh of Kharagpur Hills, South Bihar", South Asian

 $Anthropologist,\ 22 (1),\ 69\text{-}78.$

Received: 03^{th} Aug 2024 Revised: 05^{th} Dec 2024 Accepted: 29^{th} Dec 2024

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/